
Enhancement of persistent current in mesoscopic rings and cylinders: shortest and next

possible shortest higher-order hopping

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 5349

(http://iopscience.iop.org/0953-8984/18/23/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 11:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/23
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 5349–5361 doi:10.1088/0953-8984/18/23/008

Enhancement of persistent current in mesoscopic rings
and cylinders: shortest and next possible shortest
higher-order hopping

Santanu K Maiti1, J Chowdhury and S N Karmakar

Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India

E-mail: santanu.maiti@saha.ac.in

Received 13 April 2006
Published 26 May 2006
Online at stacks.iop.org/JPhysCM/18/5349

Abstract
We present a detailed study of persistent current and low-field magnetic
susceptibility in single isolated normal metal mesoscopic rings and cylinders in
the tight-binding model with higher-order hopping integral in the Hamiltonian.
Our exact calculations show that order of magnitude enhancement of persistent
current takes place even in the presence of disorder if we include the higher-
order hopping integral in the Hamiltonian. In strictly one-channel mesoscopic
rings the sign of the low-field currents can be predicted exactly even in the
presence of impurity. We observe that perfect rings with both odd and even
numbers of electrons support only diamagnetic currents. On the other hand in
the disordered rings, irrespective of realization of the disordered configurations
of the ring, we always get diamagnetic currents with odd numbers of electrons
and paramagnetic currents with even numbers of electrons. In mesoscopic
cylinders the sign of the low-field currents cannot be predicted exactly since
it strongly depends on the total number of electrons, Ne, and also on the
disordered configurations of the system. From the variation of persistent current
amplitude with system size for constant electron density, we conclude that
the enhancement of persistent current due to additional higher-order hopping
integrals is visible only in the mesoscopic regime.

1. Introduction

Since 1960 the study of magnetic response in normal metal mesoscopic loops provides many
exotic new results as a consequence of phase coherence of the electrons in these small scale
systems. Büttiker et al [1] have shown following the works of Byers and Yang [2] that a small
isolated normal metal ring threaded by slowly varying magnetic flux φ carries an equilibrium
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current and it never decays, even in the presence of impurity in the system. This current
varies periodically with φ showing φ0 flux-quantum periodicity. Later experimental results
have verified the existence of persistent current in such small rings. At very low temperatures,
the inelastic scattering length is much larger than the ring size, L, and accordingly the electron
transport is completely phase coherent throughout the ring. Again in these small systems with
finite size the energy levels are discrete. The large phase coherence length, L(φ), and the
discreteness of the energy levels play an important role in the existence of persistent current
in these normal metal loops. There are lots of theoretical studies [3–13] on persistent current
in normal metal rings, but till now we have been unable to explain many features of these
currents that are observed experimentally. The experimental results on single isolated rings
are significantly different from those for the ensemble of single isolated rings. The measured
average currents are comparable to the sample-specific typical currents 〈I 2〉1/2 predicted for
a single ring, but are one or two orders of magnitude larger than the ensemble averaged
persistent currents expected from free electron theory. The theoretical calculations including
electron–electron interaction yield average persistent current within an order of magnitude of
the experimental value, but cannot explain the diamagnetic sign of the currents. Levy et al [14]
have measured the diamagnetic response of the currents at very low fields in an experiment on
107 isolated mesoscopic Cu rings. On the other hand, Chandrasekhar et al [15] have determined
φ0 periodic currents in Ag rings with paramagnetic response at low fields. On the theoretical
side, Cheung et al [4] predicted that the direction of persistent current is random depending
on the total number of electrons, Ne, in the system and the specific realization of the random
potentials. Both diamagnetic and paramagnetic responses have been observed theoretically in a
mesoscopic Hubbard ring by Yu and Fowler [16]. They have shown that the rings with odd Ne

exhibit paramagnetic response while those with even Ne give diamagnetic response in the limit
φ → 0. In a recent experiment Jariwala et al [17] obtained diamagnetic persistent currents
with both φ0 and φ0/2 flux-quantum periodicities in an array of 30 diffusive mesoscopic gold
rings. The diamagnetic sign of the currents in the vicinity of zero magnetic field was also found
in an experiment [18] on 105 disconnected Ag rings. The sign is a priori not consistent with
the theoretical predictions for the average of persistent current. Thus we see that theory and
experiment still do not agree very well.

In this paper we shall describe the magnetic response of one-dimensional normal
metal mesoscopic rings and cylinders within the one-electron picture using a tight-binding
Hamiltonian. Almost all the existing theories are basically based on the framework of the
nearest-neighbour tight-binding Hamiltonian with either diagonal disorder or off-diagonal
disorder. But here we consider an additional higher-order hopping integral with the nearest-
neighbour hopping (NNH) integral in the Hamiltonian and try to explain the dependences of
persistent currents on the number of electrons Ne and disorder strengths W . We can consider
higher-order hopping integrals in the Hamiltonian on the basis that the overlaps of the atomic
orbitals between various neighbouring sites are usually non-vanishing and the higher-order
hopping integrals become quite important. In this paper we take only one higher-order hopping
integral, in addition to the NNH integral, which gives the hopping of an electron in the next
shortest path between two sites. In the case of strictly one-dimensional rings, i.e. rings with
only one channel, the next possible shortest path is equal to twice the lattice spacing (see
figure 1), while in cylinders it would be the diagonal distance (shown by the arrows in figure 7)
of each small rectangular loop (see figure 7).

This paper is organized as follows. In section 2 we study the variation of persistent current
as a function of magnetic flux φ in strictly one-dimensional mesoscopic rings. Here we describe
the dependences of persistent currents on electron numbers Ne, disorder strengths W and also
on higher-order hopping integral. Section 3 describes the behaviour of persistent currents in
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Φ

Figure 1. One-dimensional normal metal ring threaded by a magnetic flux φ. The filled circles
denote the positions of the lattice site.

mesoscopic cylinders and the effects of diagonal hopping integral on current in presence of
impurity. The sign of the low-field currents in these mesoscopic rings and cylinders is clearly
investigated in section 4. In section 5, we compute the variation of current amplitudes with
system size N both for one-channel mesoscopic rings and cylinders. Lastly, our conclusions
are given in section 6.

2. One-dimensional mesoscopic ring

The Hamiltonian for a N-site ring in the tight-binding model can be written as

H =
∑

i

εi c
†
i ci +

∑

i �= j

vi j

[
eiθi j c†

i c j + h.c.
]

(1)

where εi ’s are the site potential energies and the phase factors are θi j = 2πφ(|i − j |)/N .
We take the hopping integral between any two sites i and j ; here in our present model j has
the values i ± 1 and i ± 2 only, in the form vi j = v exp[α(1 − |i − j |)], where v is
the hopping strength between any two nearest-neighbour sites. In this work we use the units
c = e = h = 1. As we are considering only non-magnetic impurities, the spin of the electrons
will not produce any qualitative change in the behaviour of persistent current and low-field
magnetic susceptibility, and so we neglect the spin of the electrons throughout this work.

At zero temperature, the persistent current is given by

I (φ) = −∂ E(φ)

∂φ
(2)

where E(φ) is the ground state energy of the system. For a perfect ring we can calculate ground
state energy analytically, while in a disordered ring we do exact numerical diagonalization to
evaluate the ground state energy. Gauge invariance [2] implies that I (φ) is a periodic function
of φ with period φ0 = ch/e = 1.

In this section we investigate the behaviour of current-flux characteristics both for the
ordered and disordered rings described by the Hamiltonians with only NNH integral and the
rings described by the Hamiltonians with NNH integral in addition to the second neighbour
hopping (SNH) integral. For an ordered ring we put εi = 0 for all i in the above Hamiltonian
given by equation (1), and the energy of the nth single-particle state can be expressed as

En(φ) =
p0∑

p=1

2 v exp
[
α(1 − p)

]
cos

[
2πp

N
(n + φ)

]
(3)

and the current carried by this eigenstate is

In(φ) =
(

4πv

N

) p0∑

p=1

p exp
[
α(1 − p)

]
sin

[
2πp

N
(n + φ)

]
(4)
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Figure 2. Energy spectra and persistent currents of ten-site perfect rings with four electrons
(Ne = 4), where (a) and (b) correspond to the NNH model while (c) and (d) correspond to the
SNH (α = 1.1) model.

where p is an integer. We take p0 = 1 and 2 respectively for the rings with NNH and SNH
integrals.

At zero temperature, we can write the total persistent current in the following form:

I (φ) =
∑

n

In(φ) (5)

where n is an integer and restricted in the range −�Ne/2� � n < �Ne/2� (�z� denotes the
integer part of z), where Ne denotes the number of electrons.

For large values of α, the systems described by the SNH integral eventually reduce to the
systems with only NNH integral. As we decrease the value of α, contributions from the SNH
integral become much more appreciable, and the energy spectrum and persistent currents get
modified, and these modifications give some new results both in the absence and presence of
disorder in the systems.

To reveal this fact, we first present in figure 2 the energy spectra and persistent currents
of ten-site perfect rings with four electrons. The energy spectra for the NNH and SNH models
are respectively shown in figures 2(a) and (c), and the solid curves give the variation of Fermi
level at T = 0 with flux φ. We see that the SNH integral lowers the energy levels and most
importantly below the Fermi level the slopes of the E(φ) versus φ curves increase. As a result
persistent current increases in the presence of SNH integrals and this enhancement of persistent
current is clearly visible from figures 2(b) and (d). In figure 2 we have considered ten-site rings
only for the sake of illustration and the results for the larger rings are presented in figure 3.

In figure 3 we plot I (φ) versus φ curves for some perfect rings with N = 100 and α = 0.9.
The dotted and solid lines respectively give the variation of current as a function of magnetic
flux φ for the systems with NNH and SNH integrals. The enhancement of current amplitudes
due to the addition of the SNH integral is clearly observed from figures 3(a) and (b) if we
compare the results plotted by the dotted and solid curves. Figure 3(a) shows that the current
has sharp transitions at φ = 0 or ±nφ0, while in figure 3(b) the current shows transitions at
φ = ±nφ0/2. These transitions are due to the degeneracy of the energy eigenstates at these
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Figure 3. Persistent current as a function of φ for ordered rings with N = 100, α = 0.9, and
(a) Ne = 20 and (b) Ne = 15. The dotted and solid lines are respectively for the rings with NNH
and SNH integrals.
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Figure 4. Energy spectra and persistent currents of ten-site disordered (W = 1) rings with four
electrons (Ne = 4), where (a) and (b) correspond to the NNH model while (c) and (d) correspond
to the SNH (α = 1.1) model.

respective fields. From figure 3 we see that for all the above models persistent currents are
always periodic in φ with φ0 flux periodicity.

To understand the role of the higher-order hopping integral on persistent currents in
disordered rings, we first study the energy spectra and currents in small rings, and the results
for ten-site rings with Ne = 4 are shown in figure 4. We describe the system by Hamiltonian
equation (1) with the site energies εi chosen randomly between −W/2 and W/2, where W is
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Figure 5. Persistent current as a function of φ for the disordered rings with N = 100, α = 0.9,
W = 1, and (a) Ne = 20 and (b) Ne = 15. The dotted and solid lines are respectively for the rings
with NNH and SNH integrals.

the strength of the disorder. In figures 4(a) and (c) we present the energy spectra respectively
for the NNH and SNH models where solid curves give the location of the Fermi level. As in
the ordered situations, the SNH integral lowers the energy levels and below the Fermi level the
slopes of the E(φ) versus φ curves are much more than those for the NNH model. Thus even
in the presence of disorder we have enhancement of persistent current due to the SNH integral.

The results for the larger disordered rings are given in figure 5, where we take N = 100,
α = 0.9 and W = 1. The persistent currents corresponding to the cases with NNH and SNH
integrals are respectively represented by the dotted and solid lines. Here results are presented
for some typical disordered configurations of the ring, and in fact we observe that the qualitative
behaviour of the persistent currents does not depend on the specific realization of the disordered
configurations. This figure shows that the persistent currents for the disordered rings are always
periodic in φ with φ0 flux periodicity. In the presence of disorder, we see from figure 5 that the
persistent current always becomes a continuous function of magnetic flux φ, and this behaviour
can be understood as follows (see [19]). The sharp transitions at the points φ = 0 or ±nφ0 with
even Ne and at φ = ±nφ0/2 with odd Ne, for the perfect rings (see figure 3), appear due to the
degeneracy of the ground state energy at these points. Now as the impurities are introduced,
all the degeneracies are lifted and current exhibits a continuous variation with respect to φ. At
these degenerate points, the ground state energy passes through an extremum, which in turn
gives zero persistent current as shown in figure 5. It is clear from figure 5 that the higher-order
hopping integral plays an important role in enhancing the amplitude of persistent current in the
disordered rings. From figures 5(a) and (b) we see that the currents in the disordered rings with
only NNH integrals (the dotted lines) are vanishingly small compared to those as observed in
the impurity free rings with NNH integrals (the dotted curves in figures 3(a) and (b)). On the
other hand, figure 5 shows that the persistent currents in the disordered rings with higher order
hopping integral are of the same order of magnitude as those for the ordered rings.

In figure 6 we give persistent currents for the disordered rings with higher electron
concentrations and study the cases with N = even or odd and Ne = even or odd. The dotted
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Figure 6. Persistent current as a function of φ for different disordered (W = 1) rings with higher
electron concentrations. Here we choose α = 1.1. (a) N = 125, Ne = 45; (b) N = 125, Ne = 40;
(c) N = 150, Ne = 55; (d) N = 150, Ne = 60.

and solid curves respectively correspond to the NNH and SNH models. It is observed that the
evenness or the oddness of N and Ne do not play any important role in persistent current but
we will see that the diamagnetic or paramagnetic sign of persistent current crucially depends
on the evenness or oddness of Ne.

Physically, the higher-order hopping integrals try to delocalize the energy eigenstates
and thereby favour phase coherence of the electrons even in the presence of disorder, and
thus prevent the reduction of persistent current due to disorder, while in the disordered rings
with only NNH integrals the enormous reduction of current amplitudes is basically due to
localization of the energy eigenstates. When we add higher order hopping integrals, it is most
likely that the localization length increases and may become comparable to the length of the
ring, and we get enhancement of persistent current.

3. Mesoscopic cylinder

This section investigates the behaviour of persistent currents as a function of magnetic flux φ

both in perfect and dirty multi-channel mesoscopic cylinders described respectively by NNH
and SNH (diagonal hopping shown by the arrows in figure 7) integrals. The main motivation
for the study of the characteristic behaviours of persistent current in these mesoscopic cylinders
is that, due to the existence of multi-channels, there is a possibility of diffusion of the electrons
in the presence of impurity and the enhancement of persistent current in diffusive systems can
be clearly verified.

The tight-binding Hamiltonian of such a multi-channel mesoscopic cylinder threaded by
a magnetic flux φ with N and M number of sites respectively along the longitudinal and
transverse direction can be written in the following form:

H =
∑

l

εlc
†
l cl +

∑

t

εt c
†
t ct +

∑

〈t,t ′〉
vtt ′ c†

t ct ′ +
∑

〈l,l′ 〉

[
vll′ e

iθll′ c†
l cl′ + h.c.

]

+
∑

〈d,d ′ 〉

[
vdd ′ eiθdd′ c†

d cd ′ + h.c.
]

(6)
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Figure 7. A normal metal mesoscopic cylinder threaded by a magnetic flux φ. The filled circles
correspond to the positions of the lattice site.

where εl and εt are the site potential energies along the longitudinal and transverse directions
respectively. vtt ′ is the transverse hopping strength, while vll′ and vdd ′ respectively correspond
to the hopping strength along the longitudinal and diagonal directions. The phase factors θll′

and θdd ′ are identical with (2πφ/N) and the diagonal hopping strength vdd ′ = v exp(−α); v is
the NNH strength along the longitudinal direction.

Here we focus on the behaviour of persistent current for perfect and dirty cylindrical
systems considering both NNH and SNH integrals. For a perfect cylinder, taking εl = 0 for all
l and εt = 0 for all t , the energy eigenvalue of the nth eigenstate is expressed in the form

En(φ) = 2 v cos

[
2π

N
(n + φ)

]
+ 4 v exp(−α) cos

[
2π

N
(n + φ)

]

× cos

[
2πm

M

]
+ 2 v cos

[
2πm

M

]
(7)

and the corresponding persistent current carried by this eigenstate is given by

In(φ) =
(

4πv

N

)
sin

[
2π

N
(n + φ)

]
+

(
8πv

N

)
exp(−α) sin

[
2π

N
(n + φ)

]
× cos

[
2πm

M

]
(8)

where n and m are two integers respectively bounded within the range −�N/2� � n < �N/2�
and −�M/2� � m < �M/2�.

Now we try to explain the behaviour of persistent current in multi-channel cylindrical
systems described by the NNH integral only. As representative examples we plot the results
of persistent current in these systems in figure 8. Here we consider the ring size N = 50
along the longitudinal direction and M = 4 along the transverse direction. The results shown
in figures 8(a) and (b) are respectively for the cylinders with Ne = 45 and Ne = 40, where
the solid lines correspond to the variation of persistent current in the absence of any impurity
(W = 0) and the dotted lines correspond to those results for the dirty system with disorder
strength W = 1. Now in these multi-channel perfect systems current shows several kink-like
structures (see solid curves in figures 8(a) and (b)) at different values of φ, depending on Ne,
compared to the results for one-channel perfect rings (see the curves in figures 3(a) and (b)).
This is due to the fact that in multi-channel systems several additional overlaps of the energy
levels take place compared to the one-channel systems. But the current always gets φ0 flux-
quantum periodicity. As the impurities are switched on all the degeneracies go out and current
has a continuous variation as shown by the dotted curves in figures 8(a) and (b). For these
cylindrical systems described by the NNH integral only it is observed that in the presence of
disorder current the amplitude gets reduced by an order of magnitude compared to the current
amplitude in perfect systems.
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Figure 8. Persistent current as a function of φ for multi-channel mesoscopic cylinders described by
only the NNH integral with N = 50, M = 4, and (a) Ne = 45 and (b) Ne = 40. The solid and
dotted lines are respectively for perfect (W = 0) and dirty (W = 1) cylinders.
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Figure 9. Persistent current as a function of φ for multi-channel mesoscopic cylinders described by
both NNH and SNH (α = 1.0) integrals with N = 50, M = 4, and (a) Ne = 45 and (b) Ne = 40.
The solid and dotted curves are respectively for perfect (W = 0) and dirty (W = 1) cylinders.

Now we focus our attention on the behaviour of persistent current for the multi-channel
cylindrical systems described with both NNH and SNH integrals. In figures 9(a) and (b) we
display the variation of persistent currents as a function of φ for the multi-channel mesoscopic
cylinders in the presence of the SNH (α = 1.0) integral in addition to the NNH integral taking
the same system size (M = 50 and N = 4) as in the systems described with the NNH integral
only. The results shown in figures 9(a) and (b) are respectively for the systems with Ne = 45
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and Ne = 40, where the solid curves present the results of perfect (W = 0) cylinders and
the dotted curves give the results of dirty (W = 1) cylinders. From the curves shown in
figures 9(a) and (b) we can emphasize that current amplitudes in dirty systems (see dotted
curves) are comparable to those of perfect systems (see solid curves). This is due to the fact
that higher-order hopping integrals try to delocalize the energy eigenstates and thus current
amplitude increases, even an order of magnitude, in comparison with the current amplitude in
dirty cylinders described with the NNH integral only.

Thus our results for both one-channel mesoscopic rings and multi-channel mesoscopic
cylinders predict that the higher-order hopping integral has an important role for the
enhancement of current amplitude in the presence of impurity.

4. Low-field magnetic susceptibility

In this section we address the behaviour of low-field magnetic susceptibility for both the
ordered and disordered one-channel mesoscopic rings and multi-channel cylinders described
by the Hamiltonians with NNH and SNH integrals. This quantity can be calculated from the
first-order derivative of persistent current and the general expression of magnetic susceptibility
is of the form

χ(φ) = N3

16π2

(
∂ I (φ)

∂φ

)
. (9)

Calculating magnetic susceptibility we can precisely predict the diamagnetic and
paramagnetic signs of the persistent currents in such systems [14–18]. Our calculations for
strictly one-channel rings show that the sign of the persistent current is not a random quantity,
rather it is independent of the specific realizations of disorder, while the calculations for multi-
channel cylinders emphasize that the sign of the currents cannot be predicted precisely since it
strongly depends on the total number of electrons, Ne, and also on the specific realization of
disordered configurations of the system.

Let us first try to describe the sign of the low-field currents in strictly one-channel
mesoscopic rings. In a perfect ring, the magnetic susceptibility associated with the current
In(φ) carried by the nth eigenstate can be expressed as

χn(φ) = N

4

p0∑

p=1

2 v p2 exp
[
α(1 − p)

]
cos

[
2πp

N
(n + φ)

]
. (10)

At zero temperature the total magnetic susceptibility will be χ(φ) = ∑
n χn(φ), where the

summation over the quantum number n lies in the range −�Ne/2� � n < �Ne/2�. In figure 10,
we display the variation of low-field magnetic susceptibility of perfect rings with the number
of electrons Ne in the rings. The dotted and solid curves respectively correspond to the rings
described by the Hamiltonians with NNH and SNH integrals. These two curves indicate that in
the limit φ → 0, persistent current exhibits a diamagnetic sign irrespective of the total number
of electrons, Ne, in the rings. This diamagnetic sign of the currents follows from the slope of
the curves at the zero-field limit (φ → 0) presented in figure 3. So we conclude that at low
magnetic fields (φ → 0) there will be only diamagnetic persistent currents in perfect rings.

Now we investigate the behaviour of low-field magnetic susceptibility for the disordered
rings. In figure 11 we plot the low-field magnetic susceptibility as a function of Ne for the
rings taking the ring size N = 200 and disorder strength W = 1. The results for the models
with NNH and SNH integrals are displayed respectively in figures 11(a) and (b), considering
α = 0.9. The solid and dotted lines in these figures are respectively for the rings with even and
odd numbers of electrons, Ne. The curves in figure 11 correspond to some typical disordered
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Figure 10. χ versus Ne curves near zero field for ordered rings with N = 200 and α = 1.1. The
dotted and solid lines are respectively for the rings with NNH and SNH integrals.
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Figure 11. χ versus Ne curves near zero field for disordered rings with N = 200, α = 1.1
and W = 1. The results corresponding to the Hamiltonians with NNH and SNH integrals are
respectively presented in (a) and (b). The solid and dotted lines are respectively for the rings with
even and odd Ne.

configurations of the rings. The most interesting finding is that the persistent currents in the
disordered rings always show diamagnetic sign for odd Ne and paramagnetic sign for even
Ne. At low fields the I –φ curves for the perfect rings have a discontinuity when Ne is even,
whereas for odd Ne there is no discontinuity (see figure 3), but in both cases persistent currents
have diamagnetic sign. As disorder removes the discontinuity of the I –φ curves, the slopes of
the I –φ curves near zero field become positive for even Ne while the slopes remain negative for
odd Ne (see figure 5). This has a very general consequence that, irrespective of the disordered
configurations, at low fields we always get diamagnetic persistent current when Ne is odd and
paramagnetic current when Ne is even.

Finally, let us consider the behaviour of the sign of persistent currents for the mesoscopic
multi-channel cylinders in the limit φ → 0. In the absence of any impurity, i.e. for perfect
cylinders, the magnetic susceptibility associated with the current In(φ) carried by the nth
energy eigenstate considering both NNH and SNH (diagonal hopping which is shown by the
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arrows in figure 7) integrals is written in the form

χn(φ) = Nv

2

{
cos

[
2π

N
(n + φ)

]
+ 2 exp(−α) × cos

[
2π

N
(n + φ)

]
cos

[
2πm

M

]}
. (11)

In these cylindrical systems the sign of the low-field currents cannot be predicted exactly,
even in the absence of any impurity, since the sign of the currents strongly depends on the
total number of electrons, Ne, and for dirty systems it also strongly depends on the specific
realization of disordered configurations.

5. Magnitude of persistent current amplitude with system size N

In this section we show that the higher-order hopping integrals play an important role to
enhance persistent current in the disordered mesoscopic rings and cylinders. For this purpose
we study the behaviour of persistent current with system size N in these systems for constant
electron density, i.e. for constant Ne/N ratio. We have calculated the current amplitude I0 at
some typical field, say at φ = 0.25, and the I0 versus N curves are shown in figure 12. The
results for the rings described with the NNH integral only are plotted in figure 12(a), while
those for the rings described by NNH and SNH integrals are shown in figure 12(b) keeping the
ratio N/Ne = 2 in both the cases. The dotted and solid lines correspond to the rings in the
absence of any impurity (W = 0) and in the presence of an impurity with strength W = 1
respectively. If we compare figures 12(a) and (b), we see that the currents in the disordered
rings are orders of magnitude less than those for the perfect rings at the mesoscopic length
scale when we use the model with only NNH integrals (see the dotted curve in figure 12(a)).
Quite interestingly, we observe that when the SNH integrals are switched on in addition to the
NNH integrals in the disordered rings, the current amplitudes have some finite non-zero values,
comparable to the perfect ring results, even if N is in the mesoscopic regime and this is evident
from the dotted curve of figure 12(b).
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Figure 12. I0 versus N curves in one-channel mesoscopic rings keeping the ratio Ne/N as a
constant by the relation N = 2Ne, where (a) rings described with NNH integral only and (b) rings
described with both NNH and SNH (α = 0.9) integrals. The dotted and solid lines respectively
corresponds the results for perfect and dirty (W = 1) systems.
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In multi-channel mesoscopic cylinders, keeping Ne/N ratio as a constant, we also get the
similar kind of behaviour for the amplitude variation.

In the nearest-neighbour tight-binding model, disorder tries to localize the electrons and
the persistent current becomes almost zero at the mesoscopic length scale. On the other hand, in
the presence of higher order hopping integrals the electron eigenstates are not localized within
the mesoscopic length scale, and we get enhanced persistent current as the electronic phase
coherence is preserved over the sample size. Accordingly, we can emphasize that both for one-
channel mesoscopic rings and multi-channel mesoscopic cylinders the higher-order hopping
integrals have an important role for the enhancement of persistent current amplitude.

6. Conclusion

In conclusion, we have studied in detail the characteristic behaviour of persistent current
and low-field magnetic susceptibility in one-channel mesoscopic rings and multi-channel
mesoscopic cylinders within the tight-binding framework in the presence of higher-order
hopping integrals. We have shown that the addition of higher-order hopping integrals in the
nearest-neighbour tight-binding Hamiltonian gives an order of magnitude enhancement of
persistent current in the disordered mesoscopic rings and cylinders. In this paper we have
also calculated low field magnetic susceptibility of these systems as a function of Ne, and our
exact calculations for one-channel rings show that the sign of the current is independent of
the realization of disorder; it can be diamagnetic or paramagnetic depending on whether Ne is
odd or even, while the calculations for the multi-channel mesoscopic cylinders indicate that the
sign of the low-field currents cannot be predicted, even in the absence of any impurity, since
it strongly depends on Ne, and for dirty cylinders it also depends on the specific realization
of disordered configurations. From the variation of current amplitude with system size N for
constant electron density, we see that enhancement of persistent current due to higher-order
hopping integrals will be appreciable only in the mesoscopic scale.
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